6th International Prader-Willi Syndrome Caregivers’ Conference – #PWSCARE24

May 2024 | Soleno Therapeutics

IPWSO
International Prader-Willi Syndrome Organisation
Certain Notices and Disclaimers

Forward-Looking Statements

This presentation contains forward-looking statements that are subject to many risks and uncertainties. Forward-looking statements appear in a number of places throughout this presentation and include statements regarding our intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things, our ongoing and planned product development and clinical trials; the timing of, and our ability to make, regulatory filings and obtain and maintain regulatory approvals for our product candidates; our intellectual property position; the degree of clinical utility of our products, particularly in specific patient populations; our ability to develop commercial functions; expectations regarding product launch and revenue; our results of operations, cash needs, and spending of the proceeds from this offering; financial condition, liquidity, prospects, growth and strategies; the industry in which we operate; and the trends that may affect the industry or us.

We may, in some cases, use terms such as “believes,” “estimates,” “anticipates,” “expects,” “plans,” “intends,” “may,” “could,” “might,” “will,” “should,” “approximately” or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Although we believe that we have a reasonable basis for each forward-looking statement contained in this presentation, we caution you that forward-looking statements are not guarantees of future performance and that our actual results of operations, financial condition and liquidity, and the development of the industry in which we operate may differ materially from the forward-looking statements contained in this presentation.

You should also read carefully the factors described in the “Risk Factors” sections and other parts of our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q, available at www.sec.gov, in order to better understand the risks and uncertainties inherent in our business and underlying any forward-looking statements. As a result of these factors, we cannot assure you that the forward-looking statements in this presentation will prove to be accurate. Furthermore, if our forward-looking statements prove to be inaccurate, the inaccuracy may be material. In light of the significant uncertainties in these forward-looking statements, you should not regard these statements as a representation or warranty by us or any other person that we will achieve our objectives and plans in any specified timeframe, or at all. Any forward-looking statements that we make in this presentation speak only as of the date of such statement, and we undertake no obligation to update such statements to reflect events or circumstances after the date of this presentation or to reflect the occurrence of unanticipated events.

Analyses in this presentation are preliminary and may be subject to change
Prader-Willi Syndrome (PWS)

- Complex genetic neurobehavioral/metabolic disorder due to the loss or lack of expression of a set of genes on chromosome 15

- Birth incidence ~1:15,000 live births

- Elevated mortality rates; average life expectancy ~30 years

- High unmet need for:
 - Hyperphagia
 - Low lean body mass/increased fat mass
 - PWS-related behaviors

- Quality of life for families with a child with PWS is greatly affected
 - Non-PWS siblings show high rates of post traumatic stress syndrome
PWS – Unmet Medical Need

• Based on a 2014 global survey of PWS caregivers by FPWR the greatest needs to address in a new therapeutic are:
 – Reduces hunger and improves behavior around food
 – Reduces fat/increases muscle mass; improves stamina/activity
 – Reduces temper outburst frequency/severity
 – Reduces obsessive compulsive behavior
 – Improved intellect/development

• Psychiatric disease burden is high in PWS, as is psychiatric medication use
 – 51.1% use at least one, 34.9% at least 2, and 20.1% at least 3
DCCR Once Daily Tablets

Daily Dosing Critical to Facilitate Independence and Compliance

Tablet formulation of choline salt of diazoxide (diazoxide choline is an NCE)

DCCR allows for gradual absorption of diazoxide over 24 hours

Protected by multiple issued patents, including composition of matter

More than 330 subjects investigated, including more than 130 with PWS

Ongoing Phase 3 program in PWS
CLINICAL PROGRAM
Mechanism of Action in PWS

Channel activated by DCCR

Membrane hyperpolarization

No Ca\(^{2+}\) influx

Hyperphagia

NPY/AgRP/GABA Neurons

- Reduced NPY and AgRP secretion - resulting in reduced hyperphagia

- Neuronal inhibition - resulting in reduced hyperinsulinemia, improved glycemic control, improved satiety and reduced hyperphagia

DMV Neurons

Insulin sensitivity

- Increased insulin binding, central, and improved post-receptor response – reduced hyperphagia

Sweet taste receptors

- Reduced detection of sweet taste - resulting in reduced intake of sweet tasting foods and reduced hyperphagia

Body Composition

Adipocytes

- Reduced de-novo fatty acid biosynthesis and increased \(\beta\)-oxidation of fat - resulting in reduced fat mass

Skeletal muscle

- Reduced atrophy and improved benefit of exercise - resulting in increased muscle mass

Pancreatic \(\beta\)-cells

- Reduced potential for hyperinsulinemia – reduced fat accumulation and improved insulin resistance

Behavioral Complications

GABAergic neurons

- Reduced neuronal firing rate - resulting in reduced aggressive and maladaptive behaviors, rigidity, depression

Adapted from Genes, 11(4), 450. https://doi.org/10.3390/genes11040450.
Phase 2 Study in PWS

• Single site (UC Irvine) – 13 obese or overweight people with PWS – no hyperphagia inclusion criteria

• 10 weeks open label and 4 weeks RW

• What we learned
 – Significant reductions in hyperphagia
 – Significant loss of body fat
 – Significant increase in lean body mass
 – Significant reduction in aggressive, threatening and destructive behaviors
 – Target dose is ~4.2 mg/kg
DCCR Phase 3 Clinical Program Design

- C601 (DESTINY PWS): Multi-center, randomized, double-blind, placebo-controlled, parallel arm study in patients with PWS (Phase 3)
- C602: Study with open-label extension (OLE) and randomized double-blind withdrawal (RW) periods
- C614: Open-label safety extension study
C601 Primary and Key Secondary Endpoints

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>DCCR (N = 82)</th>
<th>Placebo (N = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Change from Baseline in Hyperphagia at Visit 7</td>
<td>-5.94 (0.879)</td>
<td>-4.27 (1.145)</td>
</tr>
<tr>
<td>LS Mean Difference [DCCR-Placebo] (SE)</td>
<td>-1.67 (1.294)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.1983</td>
<td></td>
</tr>
</tbody>
</table>

Key Secondary Endpoints

<table>
<thead>
<tr>
<th>Key Secondary Endpoint</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Global Impression of Improvement at Visit 7 (CGI-I)</td>
<td>0.029</td>
</tr>
<tr>
<td>Mean Change From Baseline in Body Fat Mass (DXA)</td>
<td>0.023</td>
</tr>
<tr>
<td>Caregiver Global Impression of Change at Visit 7 (Caregiver GI-C)</td>
<td>0.409</td>
</tr>
</tbody>
</table>
C601/C602 Hyperphagia Change from Baseline

Weeks of Exposure to DCCR

LS Mean (±SE) Change from Baseline in HQ-CT Score

* p < 0.0001
C601/C602 PWS Profile Behavioral Change Results after One Year of DCCCR

<table>
<thead>
<tr>
<th>Domain</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive Behaviors</td>
<td><0.0001</td>
</tr>
<tr>
<td>Anxiety</td>
<td><0.0001</td>
</tr>
<tr>
<td>Compulsivity</td>
<td><0.0001</td>
</tr>
<tr>
<td>Depression</td>
<td><0.0001</td>
</tr>
<tr>
<td>Disordered Thinking</td>
<td><0.0001</td>
</tr>
<tr>
<td>Rigidity Irritability</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
C601/C602 and PATH for PWS (PATH)

- C602 was an open-label extension study of DCCR in subjects who completed DESTINY PWS successfully.

- PATH was an ongoing study evaluating the natural history of subjects with PWS:
 - Sponsored by FPWR
 - ~ 650 active participants
 - Completion of several questionnaires online every 6 months, including HQ-CT and PWSP by caregivers of people with PWS
 - PATH for PWS analysis set included subjects who met C601/602 inclusion criteria of age, baseline hyperphagia, weight and caregiver

- The statistical comparison of DCCR data to PATH was conducted by an independent CRO.
Change in Hyperphagia with DCCR Compared to PATH

<table>
<thead>
<tr>
<th></th>
<th>PATH (N = 229)</th>
<th>DCCR (N = 108)</th>
<th>PATH (N = 138)</th>
<th>DCCR (N = 106)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Mean (± SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from Baseline</td>
<td>p < 0.0001</td>
<td>p < 0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C602 Randomized Withdrawal Study Design

C602 Randomized Withdrawal Period

C602 Open-Label Period

N = 77
1:1 Randomization

DCCR
N = 38

Placebo
N = 39

4 wks

Baseline Visit
Week 0
In-Clinic

4 wks

Telemedicine Visit
Week 4

4 wks

Telemedicine Visit
Week 8

4 wks

Telemedicine Visit
Week 12

4 wks

End-of-Study Visit
Week 16
In-Clinic
Mean changes from baseline were worse (i.e., increased) for placebo than for DCCR on every question.

- Q1: How upset when denied food?
- Q2: How often bargain to get more food?
- Q3: How often forage through trash for food?
- Q4: How often person get up at night to food seek?
- Q5: How persistent after being told no more?
- Q6: How much time person spend asking or talking about food?
- Q7: How often did person try to steal food?
- Q8: When others tried to stop person from asking about food, how distressed did he/she appear?
- Q9: How often food-related behavior interfere with person's normal daily activities?
C602 RWP Highly statistically significant change in primary endpoint supported by secondary and key objective endpoints

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>Secondary Endpoints</th>
<th>Objective Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ-CT Total Score</td>
<td>CGI-S</td>
<td>CGI-I</td>
</tr>
<tr>
<td>p = 0.0022</td>
<td>p = 0.079</td>
<td>p = 0.092</td>
</tr>
</tbody>
</table>

- Mean differences all PWS behavioral domains of the PWSP (i.e., aggressive behaviors, anxiety, rigidity/irritability, compulsivity, depression, and disordered thinking) favored DCCR over placebo

CGI-S = Clinical Global Impression of Severity
CGI-I = Clinical Global Impression of Improvement
SAFETY PROFILE
Safety Profile Consistent with Prior Experience

• Substantial long-term safety database for rare disease
 – Mean duration of exposure: 2.5 yrs (max: 4.5 yrs)
 – 105 patients ≥1 yr; 90 patients ≥ 2 yrs

• Most common AEs:
 – Hypertrichosis (68.8%)
 – Peripheral edema (34.3%)
 – Hirsutism (27.2%)
 – Hyperglycemia (27.2%)

• Most AEs grade 1-2 (75.2%), most resolve without treatment
 – Otherwise, dose adjustments/temporary drug holidays, or Rx with diuretic or glucose-lowering agents for edema or hyperglycemia

• Only 8% of patients discontinued due to AEs
Impact of DCCCR

- Photos provided with consent of the DCCCR study participant’s caregiver through University of Florida, USA
- Changes not representative of all participants
- Changes occurred over 12 or more months of DCCCR once daily
SOLENO THERAPEUTICS - EUROPE
Soleno Therapeutics Europe

• EU HQ based in Dublin, Ireland

• Oversight of Europe (EU & the UK) activities:
 – Regulatory submissions for DCCR
 – Market access & reimbursement submissions for DCCR

• Focus for 2024 – prepare for regulatory submission in the EU & the UK
DCCR – regulatory planning

EU submission for DCCR in PWS

- Initiated activities in the European Union in Jan 2024
- DCCR has orphan designation from the EMA since 2017
- MAA submission to EMA will be required through the centralized procedure

UK submission for DCCR in PWS

- Initiated UK activities in addition to ongoing CT in Jan 2024
- New international recognition procedure (IRP) in place at MHRA
- UK submission can be based on both FDA and EMA procedures
Reimbursement & access

• EU
 – Member state (MS) specific
 – Single application to each country HTA body
 – Av. time to reimbursement in the EU for non-oncology orphan drugs ~600 days*

• UK
 – England & Wales – National I statute of Health & Care Excellence (NICE)
 – Scotland – Scottish Medicines Consortium (SMC)

* https://www.efpia.eu/media/s4q1e4o/efpia_patient_wait_indicator_final_report.pdf